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An acceleration-limiting control was used on a turbojet engine in
order to study the feasibility of its use as an acceleration control.
A proportional-plus-integral type of controller was used in this in-
vestigation. Transient response data were obtained to investigate the
control-system response and stability. The response was evaluated in
terms of schedule overshoot and acceleration time as a function of
control-parameter settings and input disturbance rate.

Both schedule overshoot and acceleration time were found to be a
function of rate of input disturbance, schedule level, system gain, and
controller time constant. All these parameters, therefore, must be
adjusted to provide a compromise between fast acceleration and small
overshoot. When the acceleration-limiting control was added to a
proportional-plus~-integral speed - fuel-flow control, a two-loop control
resulted. Both control loops must be adjusted to provide a compromise
between good acceleration characteristics and steady-state performance
of the speed control., If the engine should go into stall or surge dur-
ing an aeceleration transient, both the one-loop and two-loop controls
would add rather than subtract fuel flow and drive the engine further
into undesirable regions., Therefore, this system would not be safe
without an overriding control. However, the use of an acceleration-

limiting schedule has an advantage over other limit schedules in jhat
there is less dependence upon steady-state operating lines. ‘45\)
INTRODUCTION

Acceleration-limiting controls of the type considered in this re-
port automatically limit engine parameters such as fuel flow, compressor
discharge pressure, temperature, or acceleration according to a pre-
determined schedule. Investigations of temperature-limited acceleration
controls have been presented in references 1 and 2. EHowever, limiting
fuel flow, compressor discharge pressure, or temperature has a distinct
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disadvantage in that the setting of the schedule limit depends on the
steady-state operating line. Any deviation from this line caused by
engine deterioration, production deviations, or sensor errors could off-
set the schedule limit. The use of acceleration as a schedule limit
would minimize this disadvantage in that steady-state acceleration is
always zero.

An investigation of an acceleration-limiting schedule control using
a constant acceleration limit has been presented in reference 3, Since
the stall and surge accelerations are a function of speed, however, a
constant-acceleration limit cannot give optimum performance. Therefore,
an experimental program was conducted with acceleration limit scheduled
as a function of speed. This schedule was shaped to skirt the stall and
surge region. A study of the margin necessary between the acceleration-
limit schedule and stall and surge accelerations was made for several
influencing factors such as input disturbance rate and control varia-
tions. In order to test the practicality of the accelerating control, a
speed - fuel-flow control was added to study the operation of the com-
bined system.

CONTROL SYSTEMS
Acceleration-Limiting Control

A block diagram of the acceleration-limiting control is shown in
figure l(a). The demand signal sets the fuel-flow rate for either tran-
sient or steady-state operation, During an acceleration transient, the
demand simulates a signal from the operator to accelerate, ©Signals
proportional to speed and acceleration are obtained through the use of
the speed and acceleration sensor circuits. The speed signal is applied
to the function generator unit to provide the acceleration-limiting
schedule, The acceleration signal is compared with the scheduled ac-
celeration signal, and the resulting error serves as an input to the ac-
celeration controller., The action of the controller is a proportional-
plus-integral type to produce 2 desired fuel-flow correction. However,
the proportional-plus-integral control is in parallel with a low gain
proportional circuit (fig. l(b)), and thus the output is limited to
negative values. The operation of this circuit can be explained with
the following equations (symbols are defined in the Appendix).

When Vg, <.0, the diode does not conduct, and

Ro 1
VO(S) = - Pl R‘—l Q_-‘-ﬁ—z—é-;) Vl(S)

TI8F%
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When V4> 0, the diode conducts, and

( R3 (1 + RoCs)
Va (S) = - P1 -1 77 ™= - o=yns Ve (_S)
S \**L) = 1 Ang T 0O Vo +

Since Rz 1is much less than Ros or Rj, the positive output is
negligible,

Acceleration-Limiting~Plus-Speed - Fuel-Flow Control

A block diagram of the speed control and acceleration-limiting con-
trol is shown in figure Z(a). The action of the acceleration loop in
the two-loop control is exactly the same as in the acceleration-limiting
control. The demand on the combined system is made in the form of a
speed demand, however, rather than a fuel-flow demand. In the speed con-
trol, engine speed is sensed, and the speed signal is compared with a
demand speed signal. The speed error signal is operated on by a
proportional-plus-integral control that governs the demand fuel flow.
When the speed error gets larger than a preset value, the gain of the
control is decreased to stabilize the two-loop system. A schematic
diagram of the stabilizing unit used for this purpose is shown in figure

2(b). The operation of this nonlinear element can be explained as
follows:

When V5‘< PzE, the diode does not conduct, and

1
RZ '

Vo= -5 Vi
Ry

When Vé > P3zE, the dlode conducts, and

Ry
t PSE ﬁ]‘j '
Vo = v T Vi
Rz Rz
l+— 1+—
R R
2 3

Since Ré > Ré, there is a large decrease in gain when Vé > PsE.
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COMPONENT DYNAMICS

Sensors

Engine speed. - A voltage proportional to speed was obtained by
electronic conversion of pulses obtained from a magnetic pickup installed
in the compressor housing opposite a row of compressor blades, The pick-
up and electronie circuit had no measurable dynamics in the range of
interest,

Engine acceleration. - A voltage proportional to acceleration was
obtained by electronically differentiating the speed sensor output.
However, differentiation amplifies noise components proportionally with

frequency. Therefore, a high frequency filter in the form of ZI——%?T—S?
+ Tws
was added in which 7Ty was set at 0.03 second.

Engine tailpipe temperature. - A system of thermocouples was spaced
in the tailpipe to give a signal proportional to an average temperature.
The system responded with an approximate first-order lag with a time
constant that varied with speed from 0.63 to 0.33 second.

A thermocouple compensator of a lead-lag-lag nature was used to
provide a signal response flat to 16 cycles per second at an engine speed
of 4250 rpm and an overcompensated response at higher speeds, A more
complete description is given in reference 2.

Fuel System

Fuel was fed to the engine manifolds through a differential-
reducing-valve type of flow regulator that maintains a constant pressure
drop across a throttle. The respounse of this valve system was flat to
100 cycles per second. The throttle area was varied by an electro-
hydraulic servomotor. The response of this unit to an input voltage was
essentially flat to 20 cycles per second, The control system thus. varied
the fuel flow by varying the voltage impressed upon the electro-hydraulic
servomotor. A signal proportional to the throttle area was calibrated
and used for transient fuel-flow measurements, (A complete desecription
of this system is given in ref. 4.)

Engine Dynamics

Speed and acceleration - fuel-flow response. - The frequency re-
sponse of engine speed and acceleration to fuel flow as approximated
from experimental data is shown in figure 3, The frequency response
represents engine dynamics at 4500 rpm. The transfer function which

TI8¥
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approximately fits the speed - fuel-flow response is given by

KN’e -tds

(1 +71,18) (1 + T, 28)

Because acceleration transient times are relatively short, about S5 sec-
onds for the complete transient, the ability of a system to follow an

accelerating schedule depends upon the higher frequency characteristics
of acceleration - fuel-flow response. The lowest pertinent frequencies

are about % cycle during the transieunt; thus engine acceleration - fuel-

flow response below about 0.1 cps need not be considered. Therefore,

the dynamics of engine acceleration fuel flow may be approximated as
Kﬁﬁe‘tds

Zl +-TL,255

Variation of steady-state speed with fuel flow is given in figure
4, The steady-state speed - fuel-flow gain (Kﬁ) can be derived from

this curve., As shown in figure 5, the total variation of this gain
with speed is in the ratio of more than 8, the highest gain being at
idle.

The midfrequency acceleration - fuel-flow gain (Kﬁ) variation with
speed is shown in figure 6, It can be shown that

KT
. _ Xy'p
KN=TL,1

The total variation of this gain is in the ratio of about 1.5, which is
much less than the speed - fuel-flow gain.

The dead time varies with speed as shown in figure 7. The dead
time was found to be on the order of 0.10 second at idle, dropping down
to about 0,052 second at 6500 rpm, and rising again to about 0,078
second at rated speed.

The two-engine lag-time constants, L 1 and TL 2, are shown in
figure 8 as a function of engine speed. The first tlme constant (TL l)

varies between 9 and 0.9 second; the second time constant is much
shorter, varying between 0,08 and 0,032 second.
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Surge and stall Limits. - Data were taken to determine the engine
acceleration and speed when the engine first went into stall or surge
after a large disturbance in fuel flow. Figure 9 shows a number of these
data points. The shape and the operating range of the schedule used are
shown in relation to these points.

PROCEDURE AND RANGE OF VARIABLES

The experimental program consisted of engine acceleration con-
trolled by (1) the acceleration-limiting control (one-loop control) and
(2) the combination acceleration-limiting and speed-error control (two-
loop control).

Transient data were recorded on a direct-reading oscillograph, whose
frequency response was essentially flat to at least 25 cycles per second
on all channels,

One-Loop Control

A ramp disturbance in fuel flow was used as a demand signal to de-
termine the performance of the acceleration-limiting control. The tran-
sients were initiated at an engine speed of 4000 rpm (idle), and the
following parameters were varied individually: (1) ramp rate of dis-
turbance; (2) schedule-level bias; (3) controller gain; and (4) con-
troller time constant. The ramp rate of disturbance was varied between
412 and 4125 pounds per hour per second and was held constant at 2062
pounds per hour per second when other parameters were varied. Figure 9
shows the range of schedule levels used.

Evaluation of the control system and its parameters was made from
the following criteria:

(1) Stability-limits

(2) Overshoot of preset schedule (hereafter called schedule
overshoot)

(3) Acceleration time from 4000 to 5500 rpm and 4000 to 6500 rpm

Two-Loop Control

In order to have the two-loop control accelerate the engine rapidly
and safely and also provide acceptable steady-state speed control
throughout the range of engine speeds used, each controller gain and
time constant must be properly set. Controller time constants of 3

R —
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seconds for the speed loop and 0.20 second for the acceleration loop
were chosen on the basis of single-loop preliminary data. When the two
Toops are ecomhined, only certain combinstion

o AP ~adrne 1 13TT A Adasan
o Ve Dty maaa pd Uhule o

stable operation. Generally, for high gsin in one loop, low gain is re-
quired in the other for stability reasons. The theoretical plot of the
stability limit gains is shown in figure 10.

When small speed errors exist, the fuel flow demanded by the speed
controller does not produce accelerations high enocugh to cross the
schedule so only the speed control is in operation. For this range of
speed errors, the speed control gain was set as shown in figure 10 at point
A, When the speed error exceeds a preset amount, the nonlinear circuit
in the speed control decreases the speed control gain. For large speed
errors the fuel flow demanded by the speed control is great enough to
produce accelerations greater than the scheduled amount, which will bring
the acceleration loop into the control. Thus the gain of the speed loop
has been set to a new value, the acceleration loop has come into the con-
trol, and a new operating point CB) on figure 10 has been set. In order
to find the effects of each loop gain when the two loops are operating,
each loop gain was decreased holding the other gain constant,

Figure 11 shows the relative open-loop gain plotted against fre-
quency of each control loop when the system is set at operating point B
of figure 10. These open-loop responses were used in the calculations
for figure 10. Included in the acceleration-control amplitude response
are the dynamics of the engine (at 4500 rpm), fuel system, speed sensor,
acceleration sensor, and its proportional-plus-integral control., In-
cluded in the speed-control amplitude response are the dynamics of the
engine (at 4500 rpm), fuel system, speed sensor, and its proportional-
plus-integral control. When the control settings are made as shown in
figure 10, the acceleration control has higher gain at frequencies higher
than 0.0052 cycles per second, but the speed control gain is higher be-
low this frequency. This is a basic requirement for the control system
to operate since it is necessary that the acceleration control have more
effect than the speed control during short, rapid acceleration transients.

RESUITS AND DISCUSSION
One-Ioop Control

A typical acceleration transient is shown in figure 12. Recorded
traces are speed, fuel flow, tailpipe temperature, controller output,
and acceleration. Superimposed upon the acceleration trace is the ac-
celeration schedule., From steady-state operation at 4000 rpm a fuel-flow
disturbance of 2062 pounds per hour per second is applied until nearly
rated fuel flow is reached. The fuel flow increases as a ramp for ap-
proximately 0.8 second until the acceleration schedule is reached., When
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the acceleration exceeds the schedule, the controller output calls for a
reduction in fuel flow. However, the acceleration must continue to rise
from the time it first reaches the schedule until the end of the dead
time (td), which produces an irreducible overshoot (about 50 percent of

the experimental overshoot obtained in this case). The acceleration
then responds to the fuel-flow signal 13 earlier in time. Because of
the filter in the acceleration sensor, this response is somewhat sluggish
during the initial overshoot. After the initial overshoot, the control-
ler tracks the schedule very well until the acceleration demanded by the
fuel flow is less than the schedule.

Stability limits. - Figure 13 shows typical transient data for the
control system when it becomes unstable during a portion of the tran-
sient. The system was considered unstable if two cycles of oscillation
appeared. The frequency of this instability is about 2.4 cps, very
close to the calculated value. Experimental- and theoretical-system
stability limits are shown in figure 14 for accelerations in which the
controller gain and time constant were varied. The theoretical stability
limit is based upon engine dynamics at 5000 rpm. Of the engine dymamics,
the major factor of stability is the dead time., For very long time con-
stants the gain spproaches 0,0725. This represents a loop gain of 2.02
in the midfrequency region. Making the time constant of the controller
small enough to approach TL,Z decreases the maximum allowable pro-

portional gain., However, decreasing the controller time constant also
increases the range of the integrator action. Therefore, within this
range the response will be improved.

Overshoot and acceleration time. - Schedule overshoot and accelera-
tion time are plotted against controller gain and time constant in fig-
ure 15. Acceleration time was measured between 4000 and 5500 rpm, and
4000 and 6500 rpm. As the gain at each controller-time-constant setting
is increased to the stability limit, the overshoot is decreased. The
acceleration time is increased as the gain is increased but this is not
a penalty because the object of the control is to limit acceleration,
which in itself will fix a minimum theoretical acceleration time as
shown in figure 15. The overshoot is minimized as the controller time
constant approaches TL,Z and the gain approaches the stability limit.,

Figure 16 illustrates the effects of ramp rate of disturbance on
schedule overshoot and acceleration time. The schedule overshoot in-
creases nearly linearly with ramp rates over the entire range of ramp
rates used., A large part of the change in overshoot is due to dead time
since the irreducible overshoot caused by dead time is a function of
rate of change of acceleration. When the transient starts at 5000 rpm
rather than 4000 rpm, the dead time is 35 percent less, and thus the
overshoot is less. The acceleration time decreases as the ramp rate is
increased because of less time to reach the schedule and higher accel-
erations during the schedule overshoot.

e e
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Figure 17 shows the effects of schedule level on acceleration time
and schedule overshoot. As expected, acceleration time decreases when the
schedule is raised. However. as the capacity for acceleration of the
engine is approached, the acceleration approaches a constant value. The
constant value approached by the acceleration-schedule control is very
nearly that approached by the temperature-schedule control in reference
2. The schedule overshoot remains approximately the same with variation
of schedule level until the schedule reaches the more nonlinear regions
of the engine.

A very high schedule level produces fast accelerations but may also
result in stall or surge as shown in figure 18, After going into stall
or surge, acceleration will decrease and may even go below the schedule
level. If this occurs, the controller will increase the fuel flow and
drive the engine further into the undesirable region until the fuel-flow
limit is reached. The resulting damage to the engine would depend on
the fuel-flow demand being made,

Two-Loop Control

A typical transient in acceleration using the two-loop control is
shown in figure 19. Recorded traces are speed, fuel flow, tailpipe tem-
perature, acceleration-controller output, speed-controller output, and
acceleration. Superimposed upon the acceleration trace is the accelera-
tion schedule. A ramp disturbance in speed demand is made upon the
system. This demand is compared with measured speed, and the resulting
error is operated on by a proportional-plus-integral control. The output
of this control sets a desired fuel flow to the engine. When the speed
error reaches a preset value, the gain of the control is decreased.

When the acceleration crosses the schedule, the acceleration control acts
the same as it did alone, After the initial overshoot, the system
tracks the schedule very well.

Figure 20 shows the effects of each loop gain of the system on
schedule overshoot and acceleration time. (The gains of both loops were
at operating point B on figure 10 at zero-db reference gain.) A decrease
in speed-controller gain decreases overshoot. A decrease in acceleration-
controller gain increases overshoot by about the same amount. Thus we
have two controls, each seeking to comply with opposite demands. Vari-
tion in acceleration-controller gain does not appreciably affect accel-
eration time in this range. However, by decreasing the speed-controller
gain, the acceleration time increases.

If the engine should go into stall or surge when using the two-loop
control, considerable damage could result. Since acceleration would
decrease, the acceleration-limiting control loop would have little or
no effect in decreasing fuel flow. The speed control would demand a
fuel-flow increase as a function of the integrated speed error.
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An acceleration-limiting control was used on a turbojet engine to
study its performance as an acceleration control. The following results
were obtained:

When using the acceleration-limiting controller alone, midfrequency
open-loop gain is limited to a maximum of 2,02 (at 5000 rpm) for a stable
proportional control. The major part of the phase shift that causes in-
stability is due to dead time.

After the initial schedule overshoot (minimum of about 175 rpm/sec),
the control tracked the schedule very well., A compromise between
schedule overshoot and accelerstion time is required for all settings of
controller gain and time constant, demand rate, and schedule level.

As the schedule is raised, the acceleration time decreases and
finally approaches a limit. This 1limit is very close to the limit ap-
proached by the temperature-schedule control used in reference 2.

The acceleration-limiting control has an undesirable feature in
that if stall or surge are encountered, acceleration decreases and the
control adds fuel flow to drive the engine further into undesirable
conditions.

When the acceleration loop is added to a speed - fuel-flow control
loop, the parameters of each control must be adjusted to provide a com-
promise between good acceleration characteristics and steady-state speed
control. A nonlinear gain must be provided in the speed control loop in
crder to attain this performance and yet remain stable.

If stall or surge are encountered with the two-loop control, both
controls will act to drive the engine into the undesirable conditions.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, February 21, 1958
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APPENDIX - SYMBOLS

ArnvmeanS4 A AT A A

battery voltage

steady-state speed - fuel-flow gain
midfrequency acceleration - fuel-flow gain

potentiometer setting
resistive component
Laplacian operator

differentiator time constant
speed - fuel-flow, lag-time constant
filter time constant

speed - fuel-flow dead time

amplifier voltage

Subscripts:

i input

o} output

.,2,3 designation of resistor, capacitor, or lag-time constant
as noted in diagrams

Superscript:

1]

nonlinear stabilizing unit

11
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Figure 1. - Concluded. Control loop for acceleration-schedule
acceleration control.
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(b) Schematic diagram of nonlinear stabilizing unit.

Figure 2. - Concluded.

Control loops for acceleration-schedule

acceleration control and speed control.
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Schedule overshoot, rpm/sec

Acceleration time, sec
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Figure 15. - Variation of schedule overshoot and acceleration time

with controller gain and time counstant.
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Schedule overshoot,
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